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Abstract

A multi-parameter method based on multivariate spline function approximation and minimum state smoothing for

modeling the generalized aerodynamic forces is proposed in order to reduce the cost of the aerodynamic computations

in the solution of the coupled fluid–structure problem in turbomachinery. This method allows simultaneous variations

of several parameters and provides the solutions of the coupled systems at arbitrary values of the parameters using the

generalized aerodynamic forces computed at the few values of the parameters. This multi-parameter aerodynamic

modeling method is applied to a large-chord blade, for which the two chosen parameters are the rotation speed and the

inter-blade phase angle.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper is concerned with the coupled fluid–structure dynamic analysis problem in turbomachinery, i.e. the

interaction between the structural motion and the surrounding unsteady flow, whose a review of the solution methods

can be found in Marshall and Imregun (1996).

In a previous work (Tran et al., 2003), two indirect coupling methods were proposed, they are based on the cyclic

symmetry properties of both structure and fluid (Thomas, 1979; Valid and Ohayon, 1985), so that the reduction of the

analysis to only one structural reference sector and one fluid channel can be applied. The equation of motion of a

reference sector in the traveling wave coordinates is projected on the complex modes of the undamped structure in

vacuum to obtain a reduced coupled system for each phase number. The unsteady aerodynamic forces are assumed to

depend linearly on the structural displacements and velocities, and they are computed prior to the coupling calculations

by solving the Euler equations and by imposing a harmonic motion to the modes, for an inter-blade phase angle and for

several reduced oscillation frequencies. The reduced coupled system is then solved by using either the double scanning

method (or p� k method) in the frequency domain (Dat and Meurzec, 1969), or Karpel’s minimum state smoothing

method (Karpel, 1982; Roberts, 1991; Poirion, 1995) in both frequency and time domains. Structural nonlinearities

such as friction or free-play can be taken into account (Liauzun and Tran, 2002; Tran and Liauzun, 2003) by using

Craig and Bampton’s projection basis (Craig and Bampton, 1968; Tran, 2001).
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The proposed indirect coupling methods are more sophisticated than the uncoupled approach which assumes that

there is no aerodynamic coupling between the modes and that the aerodynamic forces remain unchanged whether the

structure is under aerodynamic loads or not, and by consequent, the aerodynamic forces are only computed for each

mode in vacuum which oscillates at its eigenfrequency and they are then introduced as constant scalars in the decoupled

modal equations in order to deduce the aeroelastic damping and stability of the modes (Crawley, 1988). The proposed

indirect coupling methods take into account the aeroelastic coupling between the modes and the dependence of the

aerodynamic forces on the structural motion under aerodynamic loads and especially on the unknown aeroelastic

eigenvalues, leading to a nonlinear eigenvalue problem which requires iterative solutions in the case of the flutter

equation. However, the aerodynamic forces are determined only once at the beginning of the simulation for the modes

in vacuum and the structural motion does not interact directly on the aerodynamic forces but only via the structural

modes, thanks to the hypotheses of linearized aerodynamics and harmonic motion. These assumptions are removed in

the direct coupling method where the structural motion equation, projected or not on the modes, and the fluid

equations are solved alternatively at each time step, with the data transferred from one computation to the next one

(as boundary conditions or pressure load) via the fluid–structure interface (Jacquet-Richardet and Rieutord, 1998;

Grisval and Liauzun, 1999, 2000; Sayma et al., 2000; Carstens et al., 2003; Gnesin et al., 2004; Dugeai, 2005, 2008). The

results of the indirect and direct coupling methods were compared in Tran et al. (2003) for an inviscid flow, and in

Moffatt and He (2005) for a viscous flow. Other works related to the aeroelastic coupling in turbomachinery propose to

construct reduced order models of the fluid (Willcox, 2000; Epureanu et al., 2000, 2001; Epureanu, 2003; Sarkar and

Venkatraman, 2004; Attar and Dowell, 2005) which constitute an alternative solution to the present work for reducing

the aerodynamic computational cost, or to take into account the mistuning of the blades (He et al., 2007, 2008).

In order to detect the instability areas in the turbomachinery operation map, the aerodynamic and coupling calculations

should be performed at several points by varying several parameters such as the inlet/outlet pressure ratio, the rotation

speed, the inter-blade phase angle, the excited mode, the excitation frequency, etc. As an example, a direct coupling

method which includes the inter-blade phase angle at which stability or instability would occur as a part of solution was

proposed in Rzadkowski and Gnesin (2007). For each point in the operation map and for each value of the parameters,

aerodynamic computations should be performed to generate the generalized aerodynamic forces (GAF) that are needed in

the coupled system. This leads to an important number of aerodynamic computations which are the most time consuming

tasks for obtaining the solutions of the coupled fluid–structure problem. In order to reduce the number and therefore the

cost of the aerodynamic computations, a multi-parameter method for modeling the GAF is proposed. This method, which

has already been applied to aircraft applications (Poirion, 1996), uses at first a spline function approximation (de Boor,

1992, 2001) of the GAF in terms of the chosen parameter, and then Karpel’s minimum state smoothing of the spline

coefficient matrices. The first version using univariate spline approximation of this method has been developed and

applied to turbomachinery blades with only one parameter which is the rotation speed (Tran et al., 2004, 2005).

The aim of this paper is to propose a multi-parameter method using multivariate spline approximation and Karpel’s

minimum state smoothing for modeling the GAF in order to reduce more and more the cost of aerodynamic computations.

This method allows simultaneous variations of several parameters and provides the solutions of the coupled systems at

arbitrary ‘‘computed’’ values of the parameters from the GAF computed at the few ‘‘initial’’ values of the parameters,

without any additional aerodynamic computations. It also allows both interpolation and extrapolation, this means that the

computed values of the parameters can lay inside or outside the domain defined by the initial values. This extrapolation

capability is very useful since it makes easier the detection of unstable areas in the operation map, which are generally

localized at the outskirts of the stable area, and where the aerodynamic computations generally fail to converge.

This paper is organized as follows: the reduced coupled system and the multivariate spline approximation of the GAF

are presented in Section 2. The multi-parameter Karpel’s minimum state modeling of the reduced coupled system using

multivariate spline approximation is presented in Section 3. In Section 4, the multi-parameter aerodynamic modeling

method is applied to an aircraft engine compressor blade, for which the two chosen parameters are the rotation speed

and the inter-blade phase angle. The results obtained with this method at the computed values of the parameters will be

compared to the reference results obtained by performing the aerodynamic computations at these values.
2. Reduced coupled system and multivariate spline approximation of GAF

2.1. Reduced coupled system

A structure with cyclic symmetry is composed of N identical sectors S0; S1; . . . ; SN�1 which close up on themselves to

form a circular system. The whole structure is obtained by N � 1 repeated rotations of a reference sector S0 through the
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angle b ¼ 2p=N. Each sector is limited by a left and a right frontier Ll and Lr with the adjacent sectors. The fluid

surrounding the structure is also assumed to have the same cyclic symmetry while the applied external forces can vary

arbitrarily from one sector to another sector.

Using the cyclic symmetry properties, the equation of motion of the structure comes down to N motion equations of

the reference sector S0, in terms of the traveling wave coordinates un and with the appropriate second members and

boundary conditions for N phase numbers n ¼ 0; . . . ;N � 1 and the associated inter-blade phase angles sn ¼ nb. For
each phase number n, by expressing un as a linear combination of the first mn complex modes Un of the undamped,

rotating structure in vacuum, un ¼ Unqn, and by projecting the motion equation of S0 on Un, we obtain the reduced

coupled system in the mn complex modal coordinates qnðtÞ in the time domain:

Kgnqn þ Cgn _qn þMgn €qn ¼ fagnðUnqn;Un _qnÞ þ fgn, (1)

where Kgn and Mgn are the diagonal, real generalized stiffness and mass matrices, Cgn is the complex generalized

damping and gyroscopic effect matrix, fagn and fgn are the complex generalized aerodynamic and external forces.

For the aeroelastic stability analysis, all the external forces are null except the aerodynamic forces. The solutions are

looked up under the form qnðtÞ ¼ q̃ne
pt with p ¼ io ð1þ i aÞ where o40 and a 2 R are the unknown aeroelastic

eigenfrequency and damping factor. Using the hypothesis of linearity, the GAF are written as fagnðUn qn;Un _qnÞ ¼

F̃agnðUn; pÞ q̃n e
pt and Eq. (1) leads to the flutter equation:

½Kgn þ pCgn þ p2Mgn � F̃agnðUn; pÞ�q̃n ¼ 0, (2)

which is a complex, nonlinear eigenvalue system in which the aerodynamic coefficient matrix F̃agnðUn; pÞ depends on the

complex modes Un and the unknown complex eigenvalue p.

The unsteady aerodynamic forces are computed from a basis of real mode shapes W of the reference sector, for an

oscillation frequency o and an inter-blade phase angle sn. By imposing a harmonic motion to the modes W and by

assuming that all the sectors have the same motion with a constant phase angle sn between two adjacent sectors, we

obtain the time-dependent aerodynamic coefficient matrix FagnðW; io; tÞ ¼ � 1
2
r1V2

1AnðW; io; tÞ whose ði; jÞ-term is

obtained by projecting the unsteady aerodynamic force generated by the harmonic motion of the jth mode on the ith

mode, and where r1 and V1 are the density and the velocity of the upstream unperturbed fluid. By keeping the first

harmonic term in the Fourier analysis of FagnðW; io; tÞ, we have

FagnðW; io; tÞ ’ F̃agnðW; ioÞeiot ¼ �1
2
r1V2

1ÃnðW; ioÞeiot.

F̃agnðW; ioÞ and ÃnðW; ioÞ are complex, asymmetric square matrices of dimension mn. They are computed for no
oscillation frequencies o1; . . . ;ono . The aerodynamic coefficient matrix F̃agnðUn; ioÞ generated by the complex modes

Un in Eq. (2) can be recomposed from the aerodynamic coefficient matrix obtained with the real and imaginary parts of

Un by using the linearity hypothesis (Tran et al., 2003).
2.2. Multivariate spline approximation of GAF

We consider the aerodynamic coefficient matrix ÃnðUn; p; x; yÞ associated with a modal basis Un, which depends on

the unknown complex eigenvalue p and also on two parameters x and y. For the sake of simplicity, the multivariate

spline approximation of the GAF is presented here for the case of two variables, however, the generalization to the case

of more than two variables is immediate. The symbol Un is also removed from the expression of Ãn.

Let us define the reduced frequency k ¼ o c=V1, where c is a reference length, for example the blade chord. Let

K ¼ fk1o � � �oknkg, Tx ¼ fx1o � � �oxnx
g and Ty ¼ fy1o � � �oyny

g be the reduced frequencies and the initial values of

the parameters for which the aerodynamic coefficient matrices have been computed (tabulated). The number and the

values of the reduced frequencies should be the same for all the parameters. Any couple of initial values ðxi ; yjÞ 2

Tx � Ty of the parameters is called an initial point. The aerodynamic coefficient matrix computed with the excitation

frequency o or the reduced frequency k and for the initial points ðxi; yjÞ is denoted by Ãnðio; xi; yjÞ or Ãnðik; xi; yjÞ.

We look for an approximation (interpolation and extrapolation) formulation in x and y, which is defined

simultaneously for all the reduced frequencies k1; . . . ; knk .

Let us define the complex vector of dimension ðm2
nnk � 1Þ, which is formed by the columns of the matrices

Ãnðik1; xi; yjÞ; . . . ; Ãnðiknk ; xi; yjÞ:

anðxi; yjÞ¼
t½tÃnðik1; xi; yjÞ�;1; . . . ;

tÃnðik1; xi; yjÞ�;mn
; . . . ;tÃnðiknk ;xi; yjÞ�;1; . . . ;

tÃnðiknk ; xi; yjÞ�;mn
�, (3)

where Ãnðikj ; xi; yjÞ�;l denotes the lth column of Ãnðikj ; xi; yjÞ.
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The vector function R� R�!Cm2
n nk , ðx; yÞC anðx; yÞ, which has been obtained at the initial points ðxi ; yjÞ 2 Tx � Ty,

can be extended to the domain ½xmin; xmax� � ½ymin; ymax� by using a two-variate spline function approximation (de Boor,

1992, 2001):

anðx; yÞ ¼
Xny

s¼1

Xnx

r¼1

Brsðx; yÞbr;s for ðx; yÞ 2 ½xmin; xmax� � ½ymin; ymax�, (4)

where ðx; yÞ is any arbitrary couple of computed values of the parameters and it is called a computed point, while xmin,

xmax, ymin and ymax are the minimum and maximum computed values of the parameters for which the coupling

computations will be performed. These values do not need to belong to the domain defined by the initial values,

in particular when an extrapolation of the function is required. The two-variate real functions Brs are products

of univariate B-spline functions which are associated with the sequences of knots T 0x ¼ fx
0
1p � � �px0nxþkx

g

and T 0y ¼ fy
0
1p � � �py0nyþky

g, the latters depend only on the orders kx and ky of the B-spline functions and on the

initial values Tx and Ty. The knots x01, x0nxþkx
, y01 and y0nyþky

at the extremities of T 0x and T 0y, with multiplicity kx

and ky, are chosen so that x01pminðxmin; x1Þ, x0nxþkx
Xmaxðxmax; xnx

Þ,y01pminðymin; y1Þ and y0nyþky
Xmaxðymax; yny

Þ.

The complex spline coefficient vectors br;s depend on kx, ky, T 0x, T 0y and the tabulated data anðxi; yjÞ at the initial

points.

For each computed point ðx; yÞ, the vector anðx; yÞ can be then reshaped using the inverse transformation of Eq. (3) to

obtain nk complex aerodynamic coefficient matrices Ãnðik1; x; yÞ; . . . ; Ãnðiknk ; x; yÞ of dimension ðmn �mnÞ:

Ãnðik1; x; yÞ ¼ ½an;1ðx; yÞ; . . . ; an;mn
ðx; yÞ�; . . . ; Ãnðiknk ; x; yÞ ¼ ½an;ðnk�1Þmnþ1ðx; yÞ; . . . ; an;nk mn

ðx; yÞ�, (5)

where an;j is the jth bloc of dimension ðmn � 1Þ of the vector anðx; yÞ.
3. Multi-parameter minimum state modeling of the reduced coupled system

In the previous section, the aerodynamic coefficient matrices Ãnðio; x; yÞ have been obtained from the spline

approximation equations (4) and (5), for nk reduced frequencies and with the assumption of harmonic motion. The

reduced coupled system can be then solved at any arbitrary computed point ðx; yÞ in both frequency and time domains

by using either the double scanning method or Karpel’s minimum state smoothing method (Tran et al., 2003). For

arbitrary motions like those defined in Eqs. (1) and (2) the minimum state smoothing method (Karpel, 1982) provides

an extension of the aerodynamic coefficient matrix to an area of the complex plane containing the imaginary axis, i.e. to

determine Ãnðp; x; yÞ for p ¼ ioð1þ iaÞ with aa0. It consists in modeling the GAF by using a rational approximation

and auxiliary state variables:

Ãnðp; x; yÞ ’ An0 þ
pc

V1
An1 þ

p2c2

V2
1

An2 þ
pc

V1
Dn

pc

V1
I� Rn

� ��1
En. (6)

The matrices An0, An1, An2, Dn, Rn and En are real with dimensions ðmn �mnÞ for An0, An1 and An2, ðmn � npÞ for Dn,

ðnp �mnÞ for En and Rn ¼ diagðr1; . . . ; rnp
Þ where np is the degree of the denominator of the rational function or the

number of poles and rio0 are the poles. These matrices are computed by using a method of least squares minimization

(Poirion, 1995; Tran et al., 2003).

However, in this mono-parameter method, the rational approximation equation (6) should be performed for each

computed point ðx; yÞ, whose number can be much more important than the number of the initial points. In this section,

we propose a multi-parameter modeling of the GAF by using the spline approximation and the minimum state

smoothing, in which the latter is only performed nx � ny times whatever the number of the computed points. We obtain

a reduced coupled system which depends explicitly on the parameters and which can be solved for any arbitrary

computed points in both frequency and time domains.

To this aim, we remark that the spline coefficient vectors br;s in Eq. (5) are similar to the vectors anðxi; yjÞ obtained in

Eq. (3) from the tabulated aerodynamic coefficient matrices. In particular, these two vectors coincide if the spline

functions of order 2 are used and if there is no extrapolation. We can then perform the minimum state smoothing on the

spline coefficient vectors br;s. Each vector br;s is first reshaped in a similar way as in Eq. (5) to obtain nk complex

aerodynamic coefficient matrices An;r;sðk1Þ; . . . ;An;r;sðknk Þ of dimension ðmn �mnÞ:

An;r;sðk1Þ ¼ ½br;s;1; . . . ; br;s;mn
�; . . . ;An;r;sðknk Þ ¼ ½br;s;ðnk�1Þmnþ1; . . . ; br;s;nkmn

�. (7)
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3.1. Multi-parameter minimum state modeling in frequency domain

From the matrices An;r;sðk1Þ; . . . ;An;r;sðknk Þ, Karpel’s minimum state smoothing provides rational approximations of

the matrices An;r;sðpÞ in the frequency domain, for r ¼ 1; . . . ; nx and s ¼ 1; . . . ; ny:

An;r;sðpÞ ’ An0;r;s þ
pc

V1
An1;r;s þ

p2c2

V2
1

An2;r;s þ
pc

V1
Dn;r;s

pc

V1
I� Rn;r;s

� ��1
En;r;s, (8)

where the real matrices An0;r;s, An1;r;s, An2;r;s, Dn;r;s, En;r;s, and Rn;r;s are similar to those in Eq. (6). Note that the number

of poles np;r;s can be different for each couple ðr; sÞ.
Eq. (4) is then extended to the matrices An;r;sðpÞ to obtain a spline approximation of the aerodynamic coefficient

matrix in the frequency domain for any complex eigenvalue p and any arbitrary computed point ðx; yÞ:

Ãnðp; x; yÞ ’
Xnx

r¼1

Xny

s¼1

Br;sðx; yÞAn;r;sðpÞ for ðx; yÞ 2 ½xmin; xmax� � ½ymin; ymax�. (9)

Substituting Eq. (8) in Eq. (9), we obtain

Ãnðp; x; yÞ ’ An0ðx; yÞ þ
pc

V1
An1ðx; yÞ þ

p2c2

V2
1

An2ðx; yÞ þ
Xnx

r¼1

Xny

s¼1

Br;sðx; yÞ
pc

V1
Dn;r;s

pc

V1
I� Rn;r;s

� ��1
En;r;s

 !

(10)

with

An0ðx; yÞ ¼
Xnx

r¼1

Xny

s¼1

Br;sðx; yÞAn0;r;s; An1ðx; yÞ ¼
Xnx

r¼1

Xny

s¼1

Br;sðx; yÞAn1;r;s; An2ðx; yÞ ¼
Xnx

r¼1

Xny

s¼1

Br;sðx; yÞAn2;r;s.

Substituting Eq. (10) in the flutter equation (2), we obtain a nonlinear eigenvalue system of dimension 2mn which

depends explicitly on the parameters

0 I

�M��1gn ðx; yÞ½K
�
gnðx; yÞ þGnðp; x; yÞ� �M

��1
gn ðx; yÞC

�
gnðx; yÞ

" #
q̃n

pq̃n

( )
¼ p

q̃n

pq̃n

( )
, (11)

with

K�gnðx; yÞ ¼ Kgnðx; yÞ þ 1
2
r1 V2

1 An0ðx; yÞ,

C�gnðx; yÞ ¼ Cgnðx; yÞ þ 1
2
r1 c V1 An1ðx; yÞ,

M�gnðx; yÞ ¼Mgnðx; yÞ þ 1
2
r1 c2 An2ðx; yÞ,

Gnðp; x; yÞ ¼
1

2
r1V1pc

Xnx

r¼1

Xny

s¼1

Br;sðx; yÞDn;r;s½ðp c=V1ÞI� Rn;r;s�
�1En;r;s.

The nonlinear eigenvalue problem Eq. (11) is solved for any arbitrary computed point ðx; yÞ and for various values of

the fluid upstream infinite velocity V1 by using an iterative process based on the method of successive approximations

for finding a fixed point of a function (Tran et al., 2003), providing the aeroelastic frequencies and dampings. The

aeroelastic stability of the coupled system in the operating map can be studied, without having to perform any

additional aerodynamic computations.

3.2. Multi-parameter minimum state modeling in time domain

To obtain the approximation in Eq. (8) of the matrix An;r;sðpÞ, np;r;s auxiliary state variables z̃n;r;s have been defined for

each couple ðr; sÞ 2 f1; . . . ; nxg � f1; . . . ; nyg by

z̃n;r;s ¼ Br;sðx; yÞ
pc

V1

pc

V1
I� Rn;r;s

� ��1
En;r;sq̃n. (12)

These auxiliary state variables in the frequency domain satisfy

pz̃n;r;s ¼ ðV1=cÞRn;r;sz̃n;r;s þ pBr;sðx; yÞEn;r;sq̃n, (13)
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and they are solutions of a system of first-order differential equations in the time domain:

_zn;r;sðtÞ ¼ ðV1=cÞRn;r;szn;r;sðtÞ þ Br;sðx; yÞEn;r;s _qnðtÞ. (14)

The GAF are then written, respectively, in the frequency and time domains as

F̃agnðUn; p; x; yÞq̃n ¼ �
1

2
r1V2

1 An0 þ
pc

V1
An1 þ

p2c2

V2
1

An2

� �
q̃n þ

Xnx

r¼1

Xny

s¼1

Dn;r;sz̃n;r;s

 !
, (15)

fagnðUnqn;Un _qn; x; yÞ ¼ �
1

2
r1V2

1 An0qnðtÞ þ
c

V1
An1 _qnðtÞ þ

c2

V2
1

An2 €qnðtÞ þ
Xnx

r¼1

Xny

s¼1

Dn;r;szn;r;sðtÞ

 !
. (16)

Substituting Eq. (16) in the reduced coupled system Eq. (1) and combining with Eq. (14), we obtain a linear system of

second-order differential equations of dimension mn þ np with np ¼
Pnx

r¼1

Pny

s¼1np;r;s, which depends explicitly on the

parameters x and y:

K�gnðx; yÞ D0n

0 R0n

" #
qn

zn

( )
þ

C�gnðx; yÞ 0

E0nðx; yÞ �I

" #
_qn

_zn

( )
þ

M�gnðx; yÞ 0

0 0

� � €qn

€zn

( )
¼

fgn

0

� �
(17)

with K�gnðx; yÞ, C
�
gnðx; yÞ and M�gnðx; yÞ defined as in Eq. (11), and

zn ¼
t
½tzn;1;1 ; . . . ;

tzn;1;ny
; tzn;2;1 ; . . . ;

tzn;2;ny
; . . . ; tzn;nx ;1 ; . . . ;

tzn;nx ;ny
�,

D0n ¼
1
2
r1V2

1½Dn;1;1; . . . ;Dn;1;ny
;Dn;2;1; . . . ;Dn;2;ny

; . . . ;Dn;nx ;1; . . . ;Dn;nx ;ny
�,

R0n ¼ ðV1=cÞdiagðRn;1;1; . . . ;Rn;1;ny
;Rn;2;1; . . . ;Rn;2;ny

; . . . ;Rn;nx ;1; . . . ;Rn;nx ;ny
Þ,

E0nðx; yÞ ¼
t½B1;1ðx; yÞ

tEn;1;1 ; . . . ;B1;ny
ðx; yÞtEn;1;ny

;B2;1ðx; yÞ
tEn;2;1 ,

. . . ;B2;ny
ðx; yÞtEn;2;ny

; . . . ;Bnx ;1ðx; yÞ
tEn ½;nx ;1�

; . . . ;Bnx ;ny
ðx; yÞtEn;nx ;ny

�.

This second-order system is solved using the Newmark numerical integration scheme for any arbitrary computed

point ðx; yÞ.
Due to the nonlinear last term in Karpel’s minimum state approximation, Eqs. (8) and (10), the multi-parameter

modeling method is not equivalent to the mono-parameter method in which the rational approximation equation (6) is

performed for each computed point.
4. Numerical application

The previously described multi-parameter modeling method using the spline approximation and the minimum

state modeling have been applied to a numerical model of an aircraft engine compressor disk which is composed

of 24 large-chord blades. The two parameters which are chosen to vary in the coupling calculations are the rotation

speed O and the inter-blade phase angle sn, or equivalently, the phase number n. The initial values of these parameters

are in TO ¼ f70Nn; 90Nng, Nn being a nominal rotation speed, and in Tn ¼ f0; 1; 3;�1;�3g for the phase number.

A positive phase number corresponds to a forward wave traveling in the direction of the rotation (from suction

side to pressure side), while a negative phase number corresponds to a backward wave traveling in the opposite

direction.

4.1. Structural and aerodynamic computations

The structural finite element model of a reference sector with one blade has 154 332 degrees of freedom. The

eigenfrequencies and modes in vacuum are computed by using the cyclic symmetry and by taking into account

the geometrical stiffness matrix due to the centrifugal stress generated by the rotation. For the coupling calculations, the

projection basis Un is composed of the first two bending modes (1F and 2F). The reduced eigenfrequencies of the two

modes are shown in the Campbell diagrams in Fig. 1 for n ¼ 0; . . . ; 5. The eigenfrequencies for the phase number n and

�n are the same, while the eigenmodes are complex conjugate.

In order to perform the unsteady aerodynamic computations to obtain the GAF, the structural eigenmodes are

transferred to the fluid mesh at the blade profile. They are then normalized so that the maximum module of the complex

displacements of the blade is equal to 1mm. For nonzero phase numbers (na0), the complex modes are also
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Fig. 2. Eigenmodes in vacuum for O ¼ 70Nn.
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normalized, by multiplying with a complex number with module equal to 1, i.e. by performing a rotation of the modes,

so that the real part of the mode, which corresponds to the real, physical displacements of the reference sector, is

similar the real mode obtained with n ¼ 0. The first two bending modes on the fluid mesh at the blade profile are shown

in Fig. 2 for O ¼ 70Nn and n ¼ 0; . . . ; 5. We remark that the real parts of the modes are similar while the imaginary

parts are very small compared to the real parts.

The Euler simulations are performed by using an aerodynamic code called CANARI and developed for years

at ONERA (Dugeai et al., 2000). The mesh of one passage of the embedding fluid is a structured grid composed

of six domains with 23 layers along the blade length, having in total 87 676 (3812� 23) points, 1656 (72� 23) of



ARTICLE IN PRESS

X

Y

Z

X

Y

Z

Zoom

Fig. 3. Fluid mesh.

Table 1

Steady upstream infinite mass flow, velocity and absolute Mach number

O (Nn) 65 70 75 90 105

MF1=MF1ref 0.838 0.922 1.000 1.215 1.279

V1=V1ref 0.800 0.900 1.000 1.225 1.325

M1 0.32 0.36 0.41 0.50 0.55
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which are on the pressure side and 1564 (68� 23) on the suction side (Fig. 3). The following aerodynamic conditions

are used:
Initial rotation speeds
 O
 ¼ 70 and 90Nn,
Upstream total temperature
 Ti1
 ¼ 293K,
Upstream total pressure
 Pi1
 ¼ 100 630Pa,
Outlet/inlet pressure ratio
 P2=Pi1
 ¼ 0:975,

Flow axial direction
 ¼ 0�;

Initial phase numbers
 n
 ¼ 0, 1, 3, �1 and �3.
The steady aerodynamic computations are performed for the initial rotation speeds and also for the other computed

rotation speeds O ¼ 60, 75 and 105Nn. The upstream infinite fluid velocity V1 and mass flow MF1 obtained at

O ¼ 75Nn are chosen as the reference fluid velocity and mass flow, V1ref and MF1ref , for adimensioning. The

adimensioned steady upstream infinite mass flow, velocity and absolute Mach number are shown in Table 1.

With the steady flowfield previously computed and used as initial conditions, the unsteady aerodynamic simulations

are performed at the 10 initial points ðO; nÞ 2 TO � Tn by exciting the first two modes (1F and 2F) with a harmonic

motion and the aerodynamic coefficient matrices are obtained by projecting the induced aerodynamic forces on these

modes, using five reduced excitation frequencies k ¼ 2pfc=V1ref : 0.229, 4.349, 9.155, 14.65, 20.6. A blowing condition is

used to simulate the blade motion.

The number of unsteady aerodynamic computations is 20 for n ¼ 0 (2 rotation speeds �2 modes �5 frequencies) and 160

for na0 (2 rotation speeds �4 phase numbers �4 modes (real and imaginary parts) �5 frequencies). The number of

oscillating periods, the number of time steps and the computation times on a HP-Itanium work station are shown in Table 2.
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Table 2

Some statistics on the unsteady computations

Phase number n ¼ 0 na0

Reduced frequency 0.229 4.349 9.155 14.65 and 20.6 0.229 4.349 9.155 14.65 and 20.6

Number of periods 4 10 40 40 20 20 40 40

Number of time steps per period 30 000 2040 1008 600 72a 72a 1008 600

Computation time (h) 11 2 3 2 13 4 4 3

aDual time step.
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The dual time step technique is used for the frequencies 0.229 and 4.349 in the case na0. The time evolution of the

aerodynamic coefficients is well stabilized at the end of the simulation.

For na0, the aerodynamic coefficient matrices obtained by exciting and by projecting separately on the real and

imaginary parts of the complex modes should be recomposed to obtain the matrices of GAF induced by the complex

modes. The complex modes are normalized again, and the matrices of GAF are modified consequently by linearity, so

that the generalized mass is equal to the identity matrix for all the cases. This is to insure the homogeneity of the

reduced coupled system and the GAF, before performing the spline approximation and the solution of the coupled

system. We notice that the GAF obtained by taking into account only the real parts of the modes are practically the

same as those obtained previously by using both parts. This is explained by the fact that the imaginary parts of the

modes are very small compared to the real parts. This also means that the unsteady aerodynamic computation costs can

be divided by two in this case.
4.2. Coupling computations

The reduced coupled systems are solved for 45 computed points ðO; nÞ 2 f65Nn, 70Nn, 75Nn, 90Nn, 105Nng �

f�4;�3;�2;�1; 0; 1; 2; 3; 4g which include the 10 initial points (Fig. 4), by using Karpel’s minimum state modeling

method in both approaches: the multi-parameter method given in Eqs. (11) and (17) or the mono-parameter method

which consists in performing Eq. (6) for each computed point. The spline approximations will be performed using spline

functions of order 2 (linear approximation). The coupling computations are performed in both frequency and time

domains for the following cases.

Case a: Initial points. The coupled system is solved only for the 10 initial points using the multi-parameter minimum

state modeling method, with the 10 tabulated GAF matrices as input data. Since there is no extrapolation, the spline

coefficient matrices are identical to the tabulated GAF matrices. This case is the same as the one where the mono-

parameter minimum state modeling method is performed at each initial point, with the tabulated GAF matrices as

input data.

Case b: Computed points, multi-parameter method. The coupled system is solved for the 45 computed points using

the multi-parameter minimum state modeling method, with the 10 tabulated GAF matrices as input data. Due to the

extrapolation, the spline coefficient matrices are no longer identical to the tabulated GAF matrices. The results are

compared to the reference results of Case a for the initial points and of Case d for the verified points.

Case c: Computed points, mono-parameter method. The coupled system is solved for the 45 computed points using

the mono-parameter minimum state modeling method, with the GAF matrices obtained at the computed points from

the spline approximation as input data. Note that the spline approximation provides at the initial points the same GAF

matrices as the tabulated ones, whatever the order of the spline functions and even in the case of extrapolation. The

results at the initial points should be the same as the reference results of Case a.

Case d: Verified points. The results obtained in Cases b and c are compared to the reference results obtained at the

verified points ðO; nÞ 2 fð65Nn;�2Þ, (65Nn,0), (70Nn,4), (75Nn,0), (75Nn,2), ð90Nn;�4Þ, (105Nn,0), ð105Nn; 4Þg
(Fig. 4). At these points, the unsteady aerodynamic computations are performed to obtain the GAF matrices and the

coupled system is then solved using the mono-parameter minimum state modeling method with these GAF matrices as

input data. Note that the unsteady aerodynamic computations failed to converge at O ¼ 65Nn and by consequent the

GAF matrices and the reference coupling results are not available for this rotation speed.

Depending on the coupling computation cases, Karpel’s minimum state smoothing is performed either on the spline

coefficient matrices or the GAF matrices, using six poles and with relative errors comprised between 0.4% and 2.9%.
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At first, the coupled system is solved in the frequency domain. We obtain the flutter diagrams showing the variation

of the aeroelastic frequencies and dampings in function of the upstream infinite fluid velocity and mass flow, around

their ‘‘nominal’’ values obtained in the steady aerodynamic computations (Table 1). Fig. 5 shows the flutter diagrams at

some initial points, and Fig. 6 at all the verified points. In all the figures, the aeroelastic dampings are scaled up so that

their maximum values are equal to unity. The aeroelastic frequencies are the same for all the computation cases and

they do not vary significantly with the upstream infinite fluid velocity. As for the aeroelastic dampings, Cases a and c

give the same results at the initial points as expected. We also obtain a good accordance between Case b and Cases a

and d. Some differences are observed on the dampings of the first mode at O ¼ 70Nn, however, the dampings are very

small at these points. At the verified points, the diagrams obtained in the three cases are very close or they have the same

shape, except at the points ð70Nn; 4Þ and ð75Nn; 0Þ. Here again, the dampings are very small at the last point.

Moreover, Cases b and c give the same results for O ¼ 105Nn. These flutter diagrams show that the aeroelastic system

is stable around the nominal upstream infinite fluid velocity and mass flow, and that the first mode (1F) is more stable

than the second mode (2F) in most of the cases.

Secondly, the coupled system is solved in the time domain at the nominal upstream infinite fluid velocity, and with the

same GAF as in the frequency domain. The time step is obtained by dividing the period of the second mode by 60. The

time responses of the generalized coordinates to an initial condition are shown in Fig. 7 for some initial and computed

points. Here again the time responses obtained in the various cases are very close, and the system is stable in most of the

cases, except at some isolated points such as ð65Nn; 1Þ. The Fourier analysis of the signals is then performed to obtain

the aeroelastic frequencies and dampings.

Both frequency and time domain methods and all the computation cases provide practically the same aeroelastic

frequencies, the errors are in most of the cases less than 0.5%, with a maximum of 2%. For a given rotation speed, the

aeroelastic frequencies vary very little with the phase number.

Fig. 8 shows the variation of the aeroelastic dampings obtained from both frequency and time domain methods, and

scaled up with the same factor for both methods, in function of the phase number, for all the rotation speeds, as follows.

(i) For O ¼ 65Nn, both Cases b and c and both frequency and time domain computations give very close results,

except at n ¼ 3 and 4 where the frequency domain method shows that the first mode is unstable. This is consistent with

the fact that the unsteady aerodynamic computations failed to converge for this rotation speed. The time domain

computations do not seem to predict any instability in Fig. 8, however, Fig. 7 shows that the time responses diverge at

the point ð65Nn; 1Þ, which means that the aeroelastic system is unstable at this point.

(ii) For Oa65Nn, the system is stable around the nominal upstream infinite velocity in all the cases. The damping of

the first mode reaches a minimum at n ¼ 0 and sometimes at n ¼ 1. Here again, the results obtained at the computed
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Fig. 5. Flutter diagrams at initial points.
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Fig. 6. Flutter diagrams at verified points.
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Fig. 7. Time responses of the generalized coordinates.
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Fig. 8. Variation of the aeroelastic dampings in function of the phase number.

D.-M. Tran / Journal of Fluids and Structures 25 (2009) 519–534532



ARTICLE IN PRESS
D.-M. Tran / Journal of Fluids and Structures 25 (2009) 519–534 533
points in Cases b and c are in good accordance with the reference results at the initial and verified points in Cases a and

d, except at some isolated points. At the point ð70Nn; 4Þ for example, the frequency domain computations do not

give good results for Case d, but provide for Case c very good results which are close to the reference results of Case d.

At the point ð105Nn; 4Þ on the other hand, both frequency and time domain methods give for Cases b and c the

same results which differ to those of Case d. The mono-parameter method (Case c) is slightly better than the multi-

parameter method (Case b) in this example. The results from the frequency and time domain methods are also in very

good accordance, in particular both methods give the same positions of the less stable points with minimum dampings.
5. Conclusion

A multi-parameter minimum state modeling method is proposed to reduce the number and the cost of the

aerodynamic computations in the solutions of the aeroelastic systems and it is applied to a compressor blade. The

reduced coupled system is solved in both frequency and time domains at the computed points where aerodynamic

computations are not performed. The results are in good accordance with the reference results at the initial and verified

points where aerodynamic computations were performed to obtain the GAF. Another approach which consists in using

the mono-parameter minimum state modeling method with the GAF obtained from the spline approximation also

provides very good results. Using the extrapolation capability, both mono-parameter and multi-parameter minimum

state modeling methods can predict unstable areas which are located outside the stable areas and where the

aerodynamic computations cannot be achieved. Further works for reducing the aerodynamic computation cost will be

the development of reduced order models of the fluid domain.
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